Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
نویسندگان
چکیده
Background: Limonene is an important monoterpene used as a chemical commodity and precursor for producing biofuels, flavor and medicinal compounds. Results: In this paper, we engineered Escherichia coli by embedding two exogenous genes encoding a limonene synthase (LS) and a geranyl diphosphate synthase (GPPS) for production of limonene. Out of 12 E. coli strains transformed with various plasmids, the best one with p15T7-ls-gpps produced limonene with a titer of 4.87 mg/L. In order to enhance the limonene production, two rate-limiting enzymes in the endogenous MEP pathway of E. coli, 1-deoxy-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate isomerase (IDI), were overexpressed consecutively on vector pET21a+, resulting in a production of 17.4 mglimonene/L at 48 h. Conclusions: After the preliminary optimization of the medium in a two-phase culture system composed of n-hexadecane (1/50, Vorg/Vaq), the final production of limonene was raised up to 35.8 mg/L, representing approximately a 7-fold improvement compared to the initial titer.
منابع مشابه
Influence of Methyl Jasmonate on Menthol Production and Gene Expression in Peppermint (Mentha x piperita L.)
Peppermint has considerable commercial value and widely cultivated for essential oil production, especially menthol. The aim of this study was to determine the quantitative expression of pulegone reductase (pr), menthofuran synthase (mfs) and limonene synthase (ls) genes in menthol biosynthesis pathway in Mentha x piperita , using semiquantitative RT-PCR analysis and evaluating menthol producti...
متن کاملTranscriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.
Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...
متن کاملEnhanced limonene production in cyanobacteria reveals photosynthesis limitations.
Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited succe...
متن کاملEnhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.
Extended Abstract Introduction and Objective: Polyploidy is one of the main factors in plant adaptation that can increase secondary metabolites production in plants. Salvia officinalis L. is a perennial plant from the Lamiaceae family with a long history of use in the medicinal industry. Tanshinones are crucial active compounds biosynthesized in Salvia. This study was aimed to analyze the expr...
متن کاملEffect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کامل